Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 23, 2026
-
As Cloud's adoption surges across industries, the limitations of its default scheduler, particularly on large scales or for jobs outside of its initial design scope, have become increasingly prominent. While the default schedulers in various cloud platforms were primarily engineered to focus on simple and predictable tasks, reinforcement learning (RL)-based schedulers are attracting attention as they can predict a larger and more diverse cloud environment. Nevertheless, there are practical constraints to the use of RL. Retraining for adaptation is necessary for each new environment, and exploration taken during each training may lead to unexpected performance degradation at runtime. To address these issues, this paper presents Dejavu which combines reinforcement learning with neural networks to learn and resolve scheduling problems more effectively. To tackle the extended training time and performance degradation by unexpected explorations, we apply pretraining using Demonstrations from existing heuristics. This guides the RL agent to explore in a safe and efficient manner. Furthermore, we design a robust reward function to push Dejavu to compete with and eventually outperform, the exploited heuristics and other baselines. The experimental results demonstrate the efficacy of Dejavu, showing remarkable improvements in key metrics. Compared to the default scheduler, it boosts resource utilization by 6 % and shortens scheduling time by 3% during the scheduling period.more » « less
-
Difficulty falling asleep is one of the typical insomnia symptoms. However, intervention therapies available nowadays, ranging from pharmaceutical to hi-tech tailored solutions, remain ineffective due to their lack of precise real-time sleep tracking, in-time feedback on the therapies, and an ability to keep people asleep during the night. This paper aims to enhance the efficacy of such an intervention by proposing a novel sleep aid system that can sense multiple physiological signals continuously and simultaneously control auditory stimulation to evoke appropriate brain responses for fast sleep promotion. The system, a lightweight, comfortable, and user-friendly headband, employs a comprehensive set of algorithms and dedicated own-designed audio stimuli. Compared to the gold-standard device in 883 sleep studies on 377 subjects, the proposed system achieves (1) a strong correlation (0.89 ± 0.03) between the physiological signals acquired by ours and those from the gold-standard PSG, (2) an 87.8% agreement on automatic sleep scoring with the consensus scored by sleep technicians, and (3) a successful non-pharmacological real-time stimulation to shorten the duration of sleep falling by 24.1 min. Conclusively, our solution exceeds existing ones in promoting fast falling asleep, tracking sleep state accurately, and achieving high social acceptance through a reliable large-scale evaluation.more » « less
An official website of the United States government
